Close Go back Collapse all sections
Process Data set: EJ Composite Access Cover (IE) (en) en

Key Data Set Information
Location IE
Geographical representativeness description IE
Reference year 2024
Name
EJ Composite Access Cover (IE)
Use advice for data set This LCA covers the Product (A1-A3), End of Life (C1-C4), and benefits and loads beyond the system boundary (D)
Technical purpose of product or process EJ composites access covers are fibre-reinforced polymer material, providing high strength, light weight solution for pedestrian and vehicular traffic areas. Size of the representative product for LCA is 300x300 mm. The product complies fully with the standard EN124:2015. For more information: https://www.igbc.ie/wp-content/uploads/2024/06/EPDIE-23-123-Composite-Access-Cover-IE-EJ-20290613.pdf The manufacturing process begins with the design of the composite access cover according to client specifications. Then, the moulding of the access cover begins with the lay-up process. Fiberglass mats are cut to the required size and layered into the mould. The arrangement of fibres and the number of layers impact the strength and stiffness of the final composite. Thermosetting resin is injected into the layers of reinforcing fibres. The resin saturates the fibres, creating a composite material when cured. The layered fibres and resin are subjected to a high internal mould pressure to remove air bubbles and ensure proper impregnation of the fibres with the resin. This step helps achieve a consistent and void-free composite. The composite material is allowed to cure, a process which involves a chemical reaction and cross linking of the resin that creates a strong and rigid matrix, bonding the reinforcing fibres together. Once the composite has cured, the access cover is demoulded and undergoes a quality control inspection. The completed composite access cover is packaged for transportation in a wooden pallet, covered in shrink wrap and secured with plastic banding.
General comment on data set The dataset is representative for the production processes used in 2023. The data Quality Level, according to Table E.1 of EN15804+A2, Annex E, is as follows: • Time Representativeness is considered to be Very Good • Geographical Representativeness is considered to be Good • Technical Representativeness is considered to be Good Allocation of energies, electricity types and amounts to the various manufacturing processes is based on mass The cut-off criteria of section 6.3.6 of EN15804+A2 have been followed.
Copyright Yes
Owner of data set
Quantitative reference
Reference flow(s)
Biogenic carbon content
  • Carbon content (biogenic): 1.0 kg
  • Carbon content (biogenic) - packaging: 1.0 kg
Time representativeness
Data set valid until 2024
Technological representativeness
Technology description including background system More technical data:https://www.igbc.ie/wp-content/uploads/2024/06/EPDIE-23-123-Composite-Access-Cover-IE-EJ-20290613.pdf

Indicators of life cycle

IndicatorDirectionUnit Raw material supply
A1
Transport
A2
Manufacturing
A3
Transport
A4
Installation
A5
Use
B1
Maintenance
B2
Repair
B3
Replacement
B4
Refurbishment
B5
Operational energy use
B6
Operational water use
B7
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
Use of renewable primary energy (PERE)
Input
  • 2.063
  • 0.01408
  • 0.2137
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00206
  • 0.00243
  • 0.00533
  • -0.4304
Use of renewable primary energy resources used as raw materials (PERM)
Input
  • 0
  • 0
  • 3.148
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Total use of renewable primary energy resource (PERT)
Input
  • 2.063
  • 0.01408
  • 3.362
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00206
  • 0.00243
  • 0.00533
  • -0.4304
Use of non renewable primary energy (PENRE)
Input
  • 31.4
  • 0.9206
  • 3.146
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.1207
  • 0.01308
  • 0.119
  • -7.727
Use of non renewable primary energy resources used as raw materials (PENRM)
Input
  • 1.446
  • 0.08826
  • 0.1399
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.01145
  • 0
  • 0
  • -0.1376
Total use of non renewable primary energy resource (PENRT)
Input
  • 32.85
  • 1.009
  • 3.286
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.1322
  • 0.01308
  • 0.119
  • -7.864
Use of secondary material (SM)
Input
  • 0.227
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • -0.422
Use of renewable secondary fuels (RSF)
Input
  • 0.05972
  • 0.00025
  • 0.00518
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00003908
  • 0
  • 0
  • -0.01443
Use of non renewable secondary fuels (NRSF)
Input
  • 0.1045
  • 0.00051
  • 0.00314
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00007684
  • 0
  • 0
  • -0.01732
Use of net fresh water (FW)
Input
  • 0.02041
  • 0.00011
  • 0.00086
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00001596
  • 0.00001121
  • 0.00011
  • -0.0035
Hazardous waste disposed (HWD)
Output
  • 0.1687
  • 0.00096
  • 0.00692
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00012
  • 1.213E-8
  • 3.963E-7
  • 0
Non hazardous waste dispose (NHWD)
Output
  • 0.1346
  • 0.03975
  • 0.01932
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.0064
  • 0.00005111
  • 0.3509
  • 0
Radioactive waste disposed (RWD)
Output
  • 0.00005965
  • 2.87E-7
  • 0.000001453
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 4.314E-8
  • 9.279E-8
  • 6.102E-7
  • 0
Components for re-use (CRU)
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Materials for recycling (MFR)
Output
  • 0.2421
  • 0.00093
  • 0.00908
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • -0.1146
Materials for energy recovery (MER)
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Exported electrical energy (EEE)
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
Exported thermal energy (EET)
Output
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0

IndicatorUnit Raw material supply
A1
Transport
A2
Manufacturing
A3
Transport
A4
Installation
A5
Use
B1
Maintenance
B2
Repair
B3
Replacement
B4
Refurbishment
B5
Operational energy use
B6
Operational water use
B7
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
Abiotic depletion potential - fossil resources (ADPF)
  • 32.85
  • 1.009
  • 3.286
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.1322
  • 0.01308
  • 0.119
  • -7.864
Abiotic depletion potential - non-fossil resources (ADPE)
  • 0.00008554
  • 2.059E-7
  • 5.792E-7
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 3.091E-8
  • 5.711E-9
  • 2.367E-8
  • 1.095E-7
Acidification potential, Accumulated Exceedance (AP)
  • 0.0111
  • 0.00059
  • 0.00116
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00002019
  • 0.000003827
  • 0.00006175
  • -0.00241
Depletion potential of the stratospheric ozone layer (ODP)
  • 8.523E-8
  • 1.478E-9
  • 8.141E-9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 2.01E-10
  • 4E-11
  • 1.214E-9
  • -1.507E-8
Eutrophication potential - freshwater (EP-freshwater)
  • 0.00079
  • 0.000004571
  • 0.00005616
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 6.565E-7
  • 5.828E-7
  • 0.00000556
  • -0.00028
Eutrophication potential - marine (EP-marine)
  • 0.00232
  • 0.00015
  • 0.0002
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.000005094
  • 7.754E-7
  • 0.00062
  • -0.00057
Eutrophication potential - terrestrial (EP-terrestrial)
  • 0.02432
  • 0.00162
  • 0.00189
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00005176
  • 0.000007336
  • 0.00017
  • -0.00599
Global Warming Potential - biogenic (GWP-biogenic)
  • 0.01043
  • 0.00004688
  • 0.02412
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.000008183
  • 0.00001683
  • 0.2433
  • -0.00139
Global Warming Potential - fossil fuels (GWP-fossil)
  • 2.17
  • 0.07268
  • 0.2302
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00924
  • 0.00063
  • 0.01845
  • -0.6348
Global Warming Potential - land use and land use change (GWP-luluc)
  • 0.00156
  • 0.00004026
  • 0.00008096
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00000456
  • 0.000001358
  • 0.000008242
  • -0.00031
Global Warming Potential - total (GWP-total)
  • 2.182
  • 0.07277
  • 0.2544
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00925
  • 0.00064
  • 0.2617
  • -0.6365
Global warming potential except emissions and uptake of biogenic carbon (GWP-IOBC/GHG)
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
No records found.
Photochemical Ozone Creation Potential (POCP)
  • 0.01009
  • 0.00054
  • 0.00065
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00003135
  • 0.000002057
  • 0.00012
  • -0.00312
Water (user) deprivation potential (WDP)
  • 0.8026
  • 0.00459
  • 0.03628
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00066
  • 0.00032
  • 0.00114
  • -0.1342

IndicatorUnit Raw material supply
A1
Transport
A2
Manufacturing
A3
Transport
A4
Installation
A5
Use
B1
Maintenance
B2
Repair
B3
Replacement
B4
Refurbishment
B5
Operational energy use
B6
Operational water use
B7
De-construction
C1
Transport
C2
Waste processing
C3
Disposal
C4
Recycling Potential
D
1This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.
2The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experiences with the indicator.
Potential Comparative Toxic Unit for ecosystems (ETP-fw) 2
  • 17.88
  • 0.4951
  • 0.8186
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.06487
  • 0.00191
  • 0.8795
  • -2.721
Potential Comparative Toxic Unit for humans - cancer effects (HTP-c) 2
  • 1.691E-8
  • 3.3E-11
  • 6.5E-11
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 4E-12
  • 1E-12
  • 1.1E-11
  • -1.034E-8
Potential Comparative Toxic Unit for humans - non-cancer effects (HTP-nc) 2
  • 2.393E-7
  • 6.34E-10
  • 2.145E-9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 9.4E-11
  • 8E-12
  • 5.04E-10
  • -1.264E-7
Potential Human exposure efficiency relative to U235 (IRP) 1
  • 0.234
  • 0.00119
  • 0.00582
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.00018
  • 0.00033
  • 0.00074
  • -0.05397
Potential Soil quality index (SQP) 2
  • 5.57
  • 0.5029
  • 0.4232
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0.07929
  • 0.01202
  • 0.213
  • -1.302
Potential incidence of disease due to PM emissions (PM) 2
  • 1.531E-7
  • 4.705E-9
  • 5.528E-9
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 0
  • 6.88E-10
  • 2.5E-11
  • 7.57E-10
  • -5.889E-8